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INFLUENCE OF INITIAL IMPERFECTIONS ON THE BUCKLING OF 
ELASTIC SHELLS UNDER MULTIPLE CRITICAL LOADS* 

L. S. SRUBSHCHIK 

The buckling and post-critical behavior of elastic conservative, shallow shells 
with very small initial imperfections in the middle-surface shape are investigated 

for several coincident critical loads. In this case the buckling mode of the 
shell in the initial post-critical stage is a linear combination of many eigenmodes 

and a computation of the critical loads is related to the need to solve systems of 
nonlinear algebraicequations /1,2/. Theanalysisisonthebasis oftheMushtari- Donnell 

-Vlasov equations /3/ by the Liapunov-Schmidt operator method /4-g/. In thecase 

of shells of arbitrary shape, asymptotic representations are constructed of new 
equilibria in the initial post-critical stage, a systemofbifurcationequations and 

formulas to determine its coefficients are obtained, and equations of the critical 

load surfaces are also derived as functions of the shell imperfection parameters. 

A complete solution of the problem is given for the non-axisymmetric buckling 

of the axisymmetric equilibrium of shells of revolution. Computational formulas 
are written down for the coefficients of the system of bifurcation equations and an 

algorithm is constructed to determine all its solutions. It is shown that taking 
account of the connectedness of the eigenmodes yields a substantial reduction in 

the upper critical pressure. Results of computations are presented for spherical 
and conical shells in two eigenmodes. According to the computations and experiments, 
the divergence of the theoretical values of the upper critical loads and the actual 

snap-through loads of a broad class of elastic shells is related mainly to small 
initial deviations of their shape from the assumed geometric surface /lO-12/.Koiter 

was the first to investigate the buckling of imperfect shells, and his researches 

were continued by a number of authors using variational principles (see the surveys 

/1,2,13-16/, almost all the papers cited in these surveys are limited to a study 
of buckling in one eigenmode). 

1. On the formulation of the problem. Operator form of the equations for 
the perturbations. The system of nonlinear equilibrium equations of elastic shells with 

initial imperfections in the middle surface shape (the Mushtari-Donnell-Vlasov variant /3/, 
p.101) can be represented in the form 

E~A~w-[[w-zZ,F~+~(~,F~=~, c"A2F -i_'i, [w, WI - [z,wl - E15, wl = 0 (1.1) 

A= = AA, Azu = lIw + 1,~ , [w, Fl= llwl,F + 12wllF - 21,wlJ, 

We shall examine these equations together with each of the boundary conditions on the contour 

r (/3/) 
l)u:=w,,- vXWp=F=Fp=O, p=O, 2) w=w,,= F=F,=O, 3)w=wp=0 (1.2) 

r,F = r,F = 0, r,F = Fop - YF,, -I- XYF,,, r,F 1 F,,, i- (2 + v) Foss + 3xF,, + (2 + v)x,F, - x2 (I - v) FIJ 

All the quantities in (1.1) and (1.2) are dimensionless and related to the dimensional quantit- 
ies in /3/ by the formula 

(I (10, z, c, fi.- p, s,x-1) 4 {IY, s, al. a?, n, t, x0-'>,E~ = h (a$'. 'i' -= EFa?sh, X = E Y"' ~3 v2 =I2 (1 - v') 

Here (1 is the characteristic dimension of the domain D,z is the middle surface of an ideal 
shell, z(s) = 0 for se r, Ec(a, p) is the dimensionless initial deflection and /51<1. The 
-_- - 
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functions q (a, f+ z (a, fi) are considered sufficiently smooth. The boundary conditions corres- 
pond to: 1) moving hinge support; 2) sliding clamping of the edge; 3) absolutely rigid 
clamping of the edge. 

Let x* =(w*,F*) denote the fundamental solution of the problem (l-l), (1.2) for E =: 0, 

and let us investigate the buckling of the appropriate equilibrium as the load changes. We 

assume the load to depend on a single parameter p and the buckling of the fundamental equili- 
brium of an ideal shell to appear as buckling at the bifurcation point p,,. Assuming 

w=w* +w, F= F* -i-q, p=pO + a (1.3) 

we obtain a system of equations in operator form 

M,,x=nx+- 2 X”C,r-ETx+E 3 h”‘R,, M,x s (.s2A20 + [z,+l - Iw* (pJ,$l - [I;* (p,), ~1, (1.4) 
rn=l m=0 

- E~A~~I + [z, 01 - [w* (PO), ml), x = (0, '#), TIs _ (Io,$l, 112 lo, wl), Tz = ([i& $11, Ii, WI) 

-Rn=(K F,*l, 15, %?*I), Gx=(Iwn*r $1 + IFt, Ol? I%,*, 01); w,*, F,*) =gg (w*, F*) 1 c 
togetherwithboundaryconditionsofthe form (1.2)from (1.1) and (1.2) forsmallperturbati~;;~ 
$7 1. 

0, 

2. Application of the Liapunov-Schmidt operator method. As a result of 
linearizing the problems (l.l), (1.2) relative to z*, we have a system 

M,x = 0, x= (a,$) (2.1) 

together with boundary conditions of the form (1.2). 

Let a system of n vector-eigenfunctions correspond to the eigenvalue p0 of the oper- 

ator M,. Orthonormalizing it relative to the metric of the space E' that is introduced in 

/9/, and letting (pi I (o~,I&) denote the vector-eigenfunctions obtained, we have 

(Cpiy (Pj>EI = 6ij, i, i = 1, 2, . . . 7 n (2.2) 

where 6ij is the Kronecker delta. Then because of the formal self-adjointness of the operator 

M o, the Schmidt operator Mr can be constructed in the form /5-77/ 

Now, by using (2.3) we obtain the equation 

MIX = IIx + x h”‘Cmx --TX + E 2 h”‘Rrn f izl UiPiqi 
m=1 m==o 

Seeking the solution z in the form of a series 

(2.4) 

x= x X(k)j*&l~. . . p>hj%b; (k)=k,, ht.. . I k,,, kc* kl $ k, $: . . . + kn, X(k))b = (%)jbv $(k)jb); (2.5) 
k+i+b>l 

where pirh, 5 are small numbers, we find equations to determine '@)ih from (2.4) 

(2.6) 
MP(~),O = aicpi (ki = 1, kj = 0, i # j, ’ = 1, 2, . , n) 

MI%I)IO = 0, MIX(O)CII = R 01 Mlx(k)jb = c Cix(k)qb + x’ (h)qrr ‘%Wt~r %,d) - (157 *(k)j,Elv 157 ~(k)jSl) - 
q+i=j 

PO (157 Fj*lv 159 wj*l) G f(Wbv k+j+8>2, p=S-I, (m)=m~,m~,...,m,;(~)=~1,~2,...~~~ 

Here p. = 1 if (k)=O, 6= 1,j> 1, and p0 = 0 in all other cases. The boundary conditions 

have the form (1.2). Summation over the symbol z' occurs over all subscripts ml + li = ki, 
q+y=j, r+t=6, where mi,ZiYq,Y,r,t are nonnegative integers. According to the 

generalized Schmidt lemma /5/, there exists a reciprocal linear bounded operator Ml-r. Hence, 

all the problems(2.6), (2.7) are solvable. In particular, we have mu),,,, = cpi for ki = 1, kj= 

0, (i # j)and .z~~~~,, = 0. By using (2.6) we obtain a system of bifurcation equations /6/ from the 

expressions for pi in (2.3) 

CJ'i sz s,(i)% + hc,("$, + a,~('+&&~ + b,,$'t&#~h_ + . . . = 0 (2.7) 

where i varies between 1 and R and the ordinary summation rule is used. Applying (25.6) in 

/5/, we find the formula (6) from /9/ to determine the coefficients in (2.3) from (2.5), (2.6) 
but with +0*,$i* replaced, respectively, by F,*, Fl*. 
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For i = j conditions (2.2) permit evaluation of 
accuracy to which the vector eigenfunctions cpj = eixi 
the system (2.1). By using the change of variables 

the constant factors ei# 0 to the 
are determined, where Xi also satisfy 
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vi = piei, (pi = l?iXiy a,(i) = eiD(O, c,,,ci) = eiemC,(‘), a,,,,(‘) = eie,e,A &i), b,,,,p = eiemelqkBmlk(i) 

it can be seen that the system of bifurcation equations (2.7) and the asymptotic representa- 
tions (2.5) result in a form independent of the amplitudes ei. Therefore, arbitrary numbers 
not equal to zero can be taken as ei in the calculations. In particular, it can be assumed 
ei = 1 or et = ImaxDl Xi II-‘, i = 1, 2, . . . , TZ. This simple fact permits elimination of the 
uncertainty in the Koiter theory for a linear combination of buckled modes in the initial 
post-critical stage /17/. 

Therefore, the problem of constructing equilibrium modes adjacent to z* in the neighbor- 
hood of p0 is reduced to the problem of seeking all real solutions of the system (2.7). After 
the solutions of this system have been found, the asymptotic representations of the equili- 
brium are obtained from (2.5). In the case of an imperfect shell (E#O) , surfaces of values 
of the critical loads p* (Al,A,,...,A,) are formed in a sufficiently small neighborhood of the 
bifurcation point p,,, where Ai = a,(i). To determine them, we shall solve the system (2.7) 
in combination with the necessary condition for buckling of the fundamental equilibrium /la/ 

Q, = detI/ a@i / apj 1) = 0 n+l - (i, j = 1, 2, . , TL) (2.8) 

Such a method permits finding the surface of critical load values as a function of n para- 
meters characterizing the shell imperfections without seeking all the branches of the solu- 
tions of the system (2.7). 

Let Ai be functions of a certain parameter s and let the vector X0= {PL~~,P~~, . . . . pno, 
h} be the solution of the system (2.7), (2.8) for some value s=so. Differentiating its 
equation with respect to s, we obtain the system 

n am,+, c Gds+z$=O (i=l, 2,..., n + 1) 
,=1 ’ 

(2.9) 

For s1 = s,, + As the solution of (2.71, (2.8) is found by using the Newton iterations 

X h+l ;= XI, - D-’ (X,, sd @ (X,, a), t, -= W”‘, I.@), . . . , p,(k), a), 0 = {CD,, a-~, . . . , a~~+~) (2.10) 

Here D-’ is the inverse matrix to the matrix of the system (2.9), and k= O,l, . . . . 1, where 
1 is the given number of iterations. Formulas (2.10) permit construction of the critical 

values p*(s) along a certain given path governed by the law of variation of Ai on s. Along 
this path the value p* is a limit point, with the exception of the case when the rank of the 
whole matrix is less than n + 1 and p*(#po) is a point of secondary bifurcation. Conver- 
gence of the iterations (2.10) drops as it is approached, since net(D) tends to zero. Let 
us note #at the points of second bifurcation arouse special interest /2/ since they are 
characterized by an abrupt qualitative change in the system behavior. 

3. Nonaxisymmetric buckling of shells of revolution in many eigenmodes. 
The solution, based on the Koiter theory, is represented in /19/ for the problem of the initial 
stage in nonaxisymmetric buckling in one eigenmode for a rigidly clamped spherical dome sub- 
jected to a load distributed uniformly over a circular domain with center at the apex. Com- 
putational formulas are obtained in this section for the analysis of the initial stage of 
nonaxisymmetric buckling in many eigenmodes of the axisymmetric equilibrium z* of arbitrary 
shells of revolution closed at the apex. 

We derive the equilibrium equation of a shell of revolution subjected to the axisymmetric 
load 4 =q(r,p) from (l.l), (1.2) for A=l,B=a= r,fJ=tL The boundary value problems 
obtained for 5= 0 and any p have the axisymmetric solutions z* (r) = (w* (r), F* (r)) that is 
determined from the system of nonlinear equations with the boundary conditions 

GAu + uu - f&u + ‘P (r) = 0, GAu - $- u2 + B,u = 0 (3.1) 

A( )--r&+fr( ), ~(r)=rp(r,p)=~q(~,p)rdr , u (r, p) = g , V (r, p) = T , $ = 8* (r) 
0 

1) [~+vU]~_l=v(l)= 0, 2) u(l)=u(l)=O, 3) U(l)= [+p"]T=l=o, Ip7 PI,_,<- 

Let us assume that the buckling of the subcritical equilibrium of an ideal shell of 
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revolution is manifest at the bifurcation point p0 in terms of the nonaxisymmetric buckling. 
Following /20/, we shall seek the solution of the boundary value problems (Z-l), (1.2) for 
A=1,B~~a=r,j3=8 in the form 

(0, $1 = aosa%I W, &I (r) = (Wl, I,) (3.2) 

Here n is an integer. After separating variables , we obtain a system with boundary conditions 
/20/ 

L,( )=( )“+ft ,I-$_( h !*=O(P), w, = 0 (P) u(Po)=uo. u(tJo)=%, ( )‘=y. 

I) wli = 4 -+ VW, = jn = f,’ 3 0, 2) u%, = w,‘ = f, = f,‘ = 0 

3) w, = w,’ = fn” - vf,’ + vdf, = 0, f,” - (2 + 9 n%’ + 3n”f, + (v - 1) f,' = 0 

to determine % (9% A (4 * 
Exactly the same problems are obtained if the solution is sought in the form (3.2) but 

with cos n@ replaced by sins@. 
Let two vector eigenfunctions X$,X, correspond to the eigenvalue p0 of the problems 

(3.3). Then four vector eigenfunctions correspond to the same value of the initial linearized 
problem, and we write them in the form 

ml = cos d3 (yl, 6,), TP~ = cos me (Ye, f%), (p3 = sin me h 8,) 

tpp4 = sins 8 (rr, 6,), yi = yi (r), 6i = 6i (t=), i = 1, 2 

Here S,m are integers, where s#VB m,s<m. It can be shown that only two of the vector 
eigenfunctions (Pi are linearly independent. Hence, we shall later consider the case of inter- 
action between two modes (PI and qa containing only cosines. For k =2, k,=k,=l, j-6 = 

0 , we have from (2.6) for 21100 = (~1100~ hxI) 

M IElI,, = (i@l, $)a1 + l%, 911, [w, 4) = fmo (3.4) 

Hence, by applying mr and 9% and seeking the solution ~~1~0 in the form 

xIloo = E(r) cos (m - s) 

we obtain a system to determine E = (El, E,) 

1:)_, E = ‘1% (I1 - Ia), 

with the boundary conditions in (3.31, but with 
by El and the system 

l$,F = 'ia (I, + Iz), 

6 + F(r) cos (m + s) 0 (3.5) 

l$i,E = r/a (I, - I,) (3.6) 

the subscript n replaced by m-s and q 

lPl*F =r ‘/a (IS f I,) (3.7) 

to determine F = (Fs,F,) , with the boundary conditions in (3.3) but with x,, replaced by F 
and the subscript n by ?n+s. Here 

rll = \p, &I,, ml + IS,, yl, sl + ISi, yz, ml + ly,, &, 819 rz13=2sm (PM hi -I- t&1 [Yd) 
(3.8) 

d, = ly,, va, ml + l-f,, yl, 51, PI, = 2 sm [yJ IyJ, ITI, 6,, ml = 71" (6,' - m2 6, / 9, IyJ = ye' - yl/ r 

For m-s=l, by using the change of variable 

5 = r&' - El, y = r-E,’ - E,, 1 xir, y/r /_, < w (3.91 

the system (3.61 is converted into the boundary value problem 

E2 (KC” - 5’ - 3 sir) f (0, - U”) y - UrJ = Vl (4, - &2 (ry” - y’ - 3 y/r) -t- (0, - u,J x = v, (r) (3.10) 
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2 VI = r (~~‘6,’ + &‘y,‘) + 2 s (m I r) (~~6, + t&y,) -m2y,‘6, - ma h’y, - s2 ~~6,’ - s2 &y,‘, 2 VS = 

ry,‘y,’ - ma n’y2 - s2 yly2’ + 2 sm y1y2/r, 1) 2’ (1) + vz (1) = y (1) = 0 

2) x (1) = y (1) = 0, 3) 5 (1) = y’ (1) - vy (1) = 0 

Furthermore, from (2.6) we have 

Jfh3oo = (1% qd, ‘12 [Ol, d) (3.11) 

for k = kI = 2, k,=O, j=S=O 
An equation of such type is obtained in the investigation of buckling in one eigenmode. 

Following /19/, we seek the solution (3.11) in the form 

52ooo= Sal(r)&+ B(r)cos2sfJ 
1 

(3.121 

Here 01 = (- PI, e1) is determined from the problem 

E2 [(r PI')' - bl / rl - u0 fir $_ (no - 6,) al = a(r), E2 [(r al')' - al / rl - u0 61 + &,,@a = & (r) (3.13) 

gr (r) = '/a [s2 (yMr)' - y1’&‘1, g, (r) = VP Is2 (yl%)’ - ~~‘~1, 1 al/r, fIllr ]r--_o < 00 

1) PI’ (1) + $1 (1) = al (1) = 0, 2) PI (1) = al (1) = 0, 3) fiI (1) = al' (1) - vu1 (1) = 0 

and the vector function B = (Bl,B,) from the system 

E,,WB = hl (r), Zzs@)B = h, (r), h = [I% 6 1, sl + 161, y1, sl + 2 sa IS,1 Iy11, h, = [y1, Ylt b-1 + 9 h YJ (3-14) 

with the boundary conditions in (3.3) but with the subscript n replaced by 2s and z,, by B. 

The vector function IOZO~ is contructed in the form (3.12) but with s replaced by m, (12 
by cr2= (- &,a,), and B by D =(D1,D,), which are determined, respectively, from the problems 
(3.3)- (3.14) but with changing there %, yr,&, respectively,by m, +~a, 6%. 

Thecoefficientsofthe systemofbifurcationequations arederivedfromformula (6) in /g/for 
n=2.Omittingthetediouscalculations,wepresentthe finalformulastoevaluatethesecoefficients 

b~~=-4n~(g,B,-aa,g~-~r((h,R~+h.B~)]dr, ) 
1 

bg)z=-44n 
St 

1 
U-h - a& - T r (HIDl + H,D,)j dr 

cl cl 

where Gi,Ni are obtained from expressions for gi, hi I respectively, by using the replacement 

of s, ~1, 6, by m, yz, 6 e. 
To prove (3.151, there is used the identity 

s' ([El, 61, Sl + [ai, El, 1n - sl - 2 (m. -s) s [El] [S,] r-l) y&r = 
0 

which is confirmed by 

formulas preceding it 
the construction. It 

m). 

(E;&‘y, --s2E:tily, + 2 (m - s) sEl (81’~~ - 81yzr-1)-EA’y~ -t 

El ~&wWd + f EIUYS, 61, sl + PI, YS, ml - 2ms lvzl PII +I dr 
0 

integration by parts. The equality b$= b$ is deduced from the two 
in (3.15). This equality is the corollary of the conservativness of 
is assumed in the derivation of (3.15) that ~#'/a m and s#l/~m (SC 

We now assume that n vector eigenfunctions correspond to the eigenvalue pa of the 
problem (3.3). Then we have n vector eigenfunctions of the form 

Cpi = cos rn: 0 (yi, Si), yi = yi (r), 6i = 6i (r), i = 1, 2, . . . , n, ml < m, < . . . < m, (3.16) 

for the eigenvalue p,, of the initial linearized problem (2.11.Here mi f'famj, mi P1/3mj, (j> i). 



634 L. S. Srubshchik 

The vector eigenfunctions sinmi8 (yis SC) are not included in the system (3.16) because of 
their linear dependence on vi. Determination of the coefficients of the series (2.5) 
reduced to solving problems of either the form (3.4)- (3.10), or (3.11)- (3.14).Coefficie~~s 
of the system of bifurcation equations are evaluated by formulas (3.15) with the appropriate 
change in subscript (mi for s and ?%j for m). 

We consequently obtain that the system (2.7) reduces to the form 

In the case the conditions ITZi +'I, mj or mi #V3mi are disturbed, some of the zero 
coefficients in (3.15) will not be zero and the form of the bifurcation system (3.17) will 
be changed (see /2,17/, for instance). In order to find the solution of the system (3.171, 
we assume analogously to /Q/ 

dl = . . . . . . . . = 4, 20, d,,fO, m = n- 1 (3.18) 

The first group of 2"' families of solutions of the system (3.17), (3.18), (2.81 is represent- 
ed by formulas (9) in /9/. TO find the second group of families of solutions, we assume 

pk, = pk. = . . . = Pk, = 0, 1 < kj <m; j = 1, 2, . . . , 1 (3.19) 

We equate the expression in parentheses in the first m equations of the system (3.171, (3.18) 
to zero. In the system of linear equations with respect to pti2 obtained we extract the matrix 
that is obtained from the matrix of coefficients aik by cancelling columnswithnumbers k,,k,, 
. . . ( k, androwswithnumbers kt, k,, . . , k,_l, n. We denote the extracted matrix of order n - l 
by Ektk.....k,, and its determinant by E, i.e., 

E = jet (Ek'k'...kf) = det 11 urb 11 , 1 < r < m 
(3.20) 

r # kl, k,, . . . , kl-1, n; 1 < s < 21, s f kz, k2, . . . , kl-1, 

k 1; k,+rz 

Solving the system of equations with the matrix Eli'kz".kb we obtain for i+ kj (j ;= 1, 2, . . 
. t 0 

Pi’=--hE-‘Hiy Hi= ~‘E~i (3.21) 
r=1. 

Here E,i is the cofactoroftheefement a,i of the matrix Ehkr.“‘l, and the prime means that the 
summation is over subscripts which do not agree with kl,k,, . . . . h-x. Substituting (3.21) into 
the last equation in f3.17), we obtain 

(3.22) 

Herethedoubleprimemeansthatthe summationisover subscripts thatdonotagreewith k%,k,, . . . . 

kt. All the families of solutions of this group are obtained by a change in the number 1 in 
(3.19) and by sampling t of the subscripts k%,k,, . . . . kg from m elements. It can be shown 

that the number of solutions of the form (3.21), (3.22) equals m2"'-l. Let us note that the 
number of families of solutions here and in /9/ were computed relative to C. Upon extract- 
ing the square root, different solutions can appear, which differ in sign in part or all of 
the pi. Each of these solutions generates its surface of critical loads although the values 
of hare identical for them for dl = . . . = d, L 0, d,,# 0 (see Sect.4, below). 

4. Spherical shell under uniform external pressure. A packet of numerical pro- 
grams for the BESM-6 electronic computer was compiled by the formulas from Sect.3 by using 
finite differences in combination with matrix factorization and the procedure of continuation 
in the load parameter /19-21/. Let us present some results of computations for imperfect 
spherical shells. 

Let q,, be the classical value of the critical pressure for a complete sphere A sz 2 I3 (1 - 

~31"' (H/h)"", PO = P.&o, where X is the shell rise, h is its thickness, T is the Poisson's ratio, 
and pn is the critical pressure of the nonaxisymmetrical buckling of an ideal sphericalshell. 
There then results from /20/ that two vector eigenfunctions with the harmonics s = 11, m = 12 
and amplitudes determined from (3-l), (3.3) for e* = --r correspond co the least eigenvalue 
PO' 0.790 of the problem (2.1) in the case of rigid support of the edge for A=17. 

Evaluating the coefficients of the system of bifurcation equations by means of (3.15), 
we obtain that the critical loads p*(A~,tl~) are determined as functions of the geometric im- 
perfections from the system of equations 
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k, i = I.2 
(4.1) 

V = 910.74cl,‘+ 1023.58~,'+ 3871.80~&,* + (p - p0)(2i23.50Q+ 2377.44pf)f E(A,pl+ ASP,) 

Let us note that because of (3.15) the coefficients bIss(‘) and bl,Je) are equal. However, 

to check the computation, they are evaluated independently by the formulas represented in 

(3.15). The discrepancy between the values obtained is O.OMa/,. Using (4.1), we find the 

coefficients 

q = q1 = 0.8578, bl = aI, = 1.8233, (2s = a*~= 1.6286, b, = ass = 0.8636 (4.2) 

for the system (3.17) for n=2. For an initial deflection ESr(r)cos 120 (in the dl=O plane), 

we find three criticalvalues of shell snap-through governed by the formulas 

PP(i) = po - qi (G.f”, I E I Q 1, f = i, 2, 3, 4 (4.3) 

'11 f [1.5 (36,)‘/$/* = 1.798, 4% z b,(b, - a,)- ‘I; zz 1.871, q.q = q, s [1.5As-’ (3A,A,-‘)+,,]‘~* z 2.892 

At = al - a*, A, = a,b, - anb, 

in a sufficiently small neighborhood of po, from formulas (9) in /9/ and (3.21), (3.22). We 

hence have four solutions 

(4.4) 

PI@) = [(L, - b,y”) aI-‘]‘/‘, y = pI@) = - [l/sLllAsAz-l]*I~ 

p(1(4) = -pP. pn(4) = p*(S), Li = -_hi = po _ ppW , i - 1, 2, 3, 4 

For an initial deflection c51(r)coslt6 (in the d,= 0 plane), we deduce 

pl(') = PO -xi (4 E)"', I E I <I, i = 5, 6, 7, 8 , XI = 1.795, x8 = 1.937, x, = xg = 2.323 (4.5) 

from (9) in /9/ and (3.21), (3.22). Here d1 is obtained from d, by replacingm by L and all 
the subscripts 2 by the subscripts 1. Formulas for solutions for i = 5,6,7, 8 are obtained, 
respectively, from (4.4) for i = 1,2,3,4 by replacing (I~, b,, as, b, , respectively, by b,, aa, bI, ~1, 
and moreover, P,'i' , p2ti) by Pl(f)r plci). Values of P>O, Pl(i), and Li for i= 1 and 5 correspond to 
buckling in one eigenmode /19/. 

To construct the critical load surfaces as functionals of the geometric imperfections Ed, 

and Ed, , we solve the system (3.17) numerically for n= 2, (3.18), (4.2) with the applica- 
tion of formulas (2.10). Let us introduce polar coordinates by setting Ed,=R cosa, Ed,=R sina, 

where o<a<2n. Continuing each of the solutions (4.3)- (4.5) along the angle CL for fixed 

R we obtain that four surfaces &(&I, Edz) are located above the plane L=O, where i=1,2,3, 
4 . For n=2 the system (3.17) possesses symmetry properties when the signs of & or pi 

are reversed. A section of these surfaces by a circular cylinder with radius l? = 0.01 is 

represented in the Fig.1. The surface L, Fasses through the curve (4.3) for i= 1 and (4.5) 

a 
(L 

0.5tlr ?c b56 m 

Fig.1 

for i=5, which are obtained under the assumption 
of buckling in one eigenmode. The intersection of 
L, with the cylinder yields the curve 1 in the Fig-l, 

which takes the value L-O.0833 at the points c(= 0, 
'iz% n and the value Ls 0.0955 at the points OL = 

lipn, %n , close to the maximum 'values on theis curve. 
There are no singular points on the surface L, ,where 
det D = 0. (The point fl = 0 isnottakeninto account). 

The surfaces L,,L,,L, are interconnected along the 
rays a mentioned below to form a three-sheeted sur- 

face with self-intersections and reentries in the 
three-space (Ed,,Sd,,L) . We mention at once that the 
curves (4.3) for i=2 and (4.5) for i = 6, that 
lie on these surfaces, consist of singular points at 
which det D = 0. For a=0 the surface L, passes 
through the curve (4.5) for i= 7, for cz = 0.5 xthrough 

the curve of singular points (4.3) for i = 2, for 
cz= n through the curve (4.5) for i=7,andfor 
a = 1.5x through the curve (4.3) for r=3. Upon 

the traversal in a along this surface after a complete 

revolution, i.e., for c(= 2~ we will not return to 
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the curve (4.5) for i = 7, but will arrive at the curve of singular points (4.5) for i = 6, 
which lies below. Along this curve the surface L , goes over into the surface L, in the five- 
dimensional space of the variables Ed,, Eda, L, 111, fir- Still another set of singular points is 
on the surface L, along the ray n-!-a,, where a, = 0.730. The intersection of L, with a 
cylinder yields curve 2 in the Fig.1. 

The surface L, passes through thecurveof singular points (4.5) for i=6 for a=O, 
through the curve (4.3) for i=3 for a= 0.5n, through the curve (4.5) for i=8 fox a=n, 
and through the curve (4.3) for i= 2 for a=1.5n. Upon a traversal in a along the surface 

L, after a complete rotation, we arrive at the curve (4.5) for i= 8, along which the surface 

LS is connected to the surface L, in the five-dimensional space. Along the ray IX- a* there 
is a family of singular points on L, . The intersection of L, with the cylinder yields the 

curve 3 in the Fig.1. 
The surface L, passes through the curve (4.5) for 1=8 for a= 0, through the curve 

(4.3) for i=4 for a=O5n. through the curve of singular points (4.5) for i=6 for 
a=n, through the curve (4.3) for i= 4 for a=1.5 51, and after a complete rotation in CI 

arrives at the curve (4.5) for i = 7. The surfaces L, and L, are connected along this last 
curve. Singular points are located on the surface Lo along the rays a, and 2n-a*. The inter- 
section of L, with the cylinder yields the curve 4 in the Fig.1. 

Therefore, by making one completerotation in a, we pass the surface & and drop onto 
the surface &,, which we traverse as a result of the second complete rotation in a, and we 
now drop onto the surface L,. After the third complete rotation in a we pass the surface ~~ 
and return to the surface Lo. A further traversal duplicates the picture described above. 

Let us present the coordinates of the points noted in the figure. The points Ai.B,,Diz Ei have 
the ordinates 0.1073. 0.0899,0.0868, 0.1342 , respectively. As has already been noted, the points 

Big Di* Cjr where i =1,2 and j =1.2,3,4, are singular or secondary bifurcation points /2,22/. 

The points C,, C,, C,, C, have the coordinates (a*, Y,), tn. -a*, YA (n + aLI ~4, (2n -a., Y,), respectively, 

where CZ, =0,730, IJ* = 0.0213. The points Mi (aj,O.f51) are of indubitable interest, where aI = 0.981, 

a1 = 3-t - aI, a, = n + a,, a, = ‘271 - al. At these points curves 2,3,4 take on maximal values,, which 

corresponds to the greatest reduction in the critical pressure for a given value of R = /5](d12+ 

Lq)'~P = 0.01. 

5. Conical shell under uniform external pressure. There results from the numer- 

ical results in /23/ that nonaxisymmetrical buckling along two eigenmodes holds for a 

conical shell under uniform external pressure and rigid clamping of the edge when A =24 

and p. = 0.242, where the appropriate harmonics have the number S= 10 and ,,* 2 11 . In this 
case computations by the formulas of Sect.3 result in the potential function 

V = 42.134~~‘ + 44.722~~4 + 170.04&L,2 + (p - PO)( 1946.81p12 + 2183.~5~,*) + E(A,pl i A& (5.1) 

For the initial deflection E<,(r) cos 119 (in the dl=O plane) we obtain (4.3) and (4.4), 

where q,= 0.6635, qn = 0.6767, q3 = qd = 1.1536. For the initial deflection E5~(r)coslOO (in the d, =O 

plane), we obtain (4.5), where xg = 0.6515, x,, = 0.7335, x, = xs = 0.8299. The location of the surfaces 

.r+ is analogous to the case of the spherical shell described above; C1 (0.7127, 0.0066); ~W~(0.982, 0.060). 

6. Spherical shell under radially varying pressure. Let us consider the non- 

axisymmetric buckling of a rigidly clamped spherical shell under a pressure distributed accord- 

ing to the law g=4psin(nr/2). The case of buckling in two eigenmodes holds for A = 4o,p, = 0.743, 

where s=32 and BL =33 * Computations by the formulas of Sec.t.3 result in the system (4.1), 

where the function V now has the form 

V = 1884.73 IL+ +l969.78 ~,~-k 7708.95 ~,'JLz"+ (p -- p,)(NO5.88 &2 + 0211.Yl pa')+ S(A,pl + Asp*) (6.1) 

For the initial deflection &{) r ~0~338 (in the d,=O plane) we obtain (4.3), (4.4), where 
ql = 1.6237. qz = 1.7029, qs = qr = 2.4788. For the initial deflection Ec1(r)cos329 (in the d, = 0 plane) 

we obtain (4.5), where xs =1.6272,x$= 1.7390,~,=~,=2.2185. The disposition of the surfaces Li is 

analogous to the preceding; c,(o.759, 0.018); Ml (0.932, 0.119). 
For a rigidly clamped spherical shell subjected to a pressure distributed according to the 

law q=4pr2 the case of buckling holds, for instance, for A=4O,p, =0.778, where s = 33, IX = 34. 

Analogously, we find 

v = 1344.68~~4 + 1397.08p,4 + 5486.65~&,2 +(P - ~,)(5658.02~1* -t 5=9%‘,1! + 5 (AII’I + AxI%) 

For the initial deflection ES%(r) ~0~349 we obtain (4,3), (4.4), where q, = 1.4706, qz = 1.5419, 

qJ = 2.24726, qs = qI. For the initial deflection E&(r) cos 339 we obtain (4.5), where x6 =1.4754,%= 

1.5770,x, = xs = 2.0085. The arrangement of the surfaces Li is the same; &(0.759, 0.020); M* (0.982, 0.131). 

The author 

results. 

is grateful to I. I. Vorovich, V. I. Iudovich, and P. E. Tovstik for discussing 

the 
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