INFLUENCE OF INITIAL IMPERFECTIONS ON THE BUCKLING OF ELASTIC SHELLS UNDER MULTIPLE CRITICAL LOADS*

L. S. SRUBSHCHIK

The buckling and post-critical behavior of elastic conservative, shallow shells with very small initial imperfections in the middle-surface shape are investigated for several coincident critical loads. In this case the buckling mode of the shell in the initial post-critical stage is a linear combination of many eigenmodes and a computation of the critical loads is related to the neer to solve systems of nonlinear algebraic equations $/ 1,2 /$. The analysis is on the basis of the Mushtari- Donnell -Vlasov equations /3/ by the Liapunov-Schmidt operator method /4-9/. In the case of shells of arbilrary shape, asymptotic representations are constructed of new equilibria in the initial post-critical stage, a system of bifurcation equations and formulas to determine its coefficients are obtained, and equations of the critical load surfaces are also derived as functions of the shell imperfection parameters.

A complete solution of the problem is given for the non-axisymmetric buckling of the axisymmetric equilibrium of shells of revolution. Computational formulas are written down for the coefficients of the system of bifurcation equations and an algorithm is constructed to determine all its solutions. It is shown that taking account of the connectedness of the eigenmodes yields a substantial reduction in the upper critical pressure. Results of computations are presented for spherical and conical shells in two eigenmodes. According to the computations and experiments, the divergence of the theoretical values of the upper critical loads and the actual snap-through loads of a broad class of elastic shells is related mainly to small initial deviations of their shape from the assumed geometric surface /10-12/.Koiter was the first to investigate the buckling of imperfect shells, and his researches were continued by a number of authors using variational principles (see the surveys $11,2,13-16 /$, almost all the papers cited in these surveys are limited to a study of buckling in one eigenmode).

1. On the formulation of the problem. Operator form of the equations for the perturbations. The system of nonlinear equilibrium equations of elastic shells with initial imperfections in the middle surface shape (the Mushtari-Donnell-Vlasov varlant /3/, p.101) can be represented in the form

$$
\begin{gathered}
\varepsilon^{2} \Delta^{2} w-[w-z, F]+\xi[\zeta, F]=q, \varepsilon^{2} \Delta^{2} F+1 / 2[w, w]-[z, w]-\xi[\zeta, w]=0 \\
\Delta^{2}=\Delta \Delta, \quad \Delta w=l_{1} w+l_{2} w, \quad[w, F]=l_{1} w l_{2} F+l_{2} w l_{1} F-2 l_{3} w l_{3} F, \quad l_{1} w=\frac{1}{A} \frac{\partial}{\partial \alpha}\left(\frac{1}{A} \frac{\partial w}{\partial \alpha}\right)+\frac{1}{A B^{2}} \frac{\partial A}{\partial \beta} \frac{\partial w}{\partial \beta} \\
l_{2} w=\frac{1}{B}{ }_{\partial \beta}^{\partial \beta}\left(\frac{1}{B} \frac{\partial w}{\partial \beta}\right)+\frac{1}{A^{2} B} \frac{\partial B}{\partial \alpha} \frac{\partial w}{\partial \alpha}, \quad l_{3} w=-\frac{1}{A B} \frac{\partial^{2} w}{\partial \alpha \partial \beta}+\frac{1}{B A^{2}} \frac{\partial A}{\partial \beta} \frac{\partial w}{\partial \alpha}+\frac{1}{A B^{2}} \frac{\partial B}{\partial \alpha} \frac{\partial u}{\partial \beta}
\end{gathered}
$$

We shall examine these equations together with each of the boundary conditions on the contour「 (/3/)

$$
\begin{equation*}
\text { 1) } \left.w=w_{\rho \rho}-v x w_{\rho}=F=F_{\rho}=0, \quad \rho=0, \text { 2) } w=w_{\rho}=F=F_{\rho}=0, \quad 3\right) w=w_{\rho}=0 \tag{1.2}
\end{equation*}
$$

$\Gamma_{2} F=\Gamma_{3} F=0, \quad \Gamma_{2} F=F_{\rho \rho}-v F_{s s}+\chi v F_{\rho}, \quad \Gamma_{3} F=F_{\rho \rho \rho}+(2+v) F_{\rho s s}+3 \chi F_{s s}+(2+v) \chi_{s} F_{s}-\chi^{2}(1-v) F_{\rho}$
All the quantities in (1.1) and (1.2) are dimensionless and related to the dimensional quantities in /3/ by the formula
$a\left\{w, z, \alpha, \beta,-\rho, s, x^{-1}\right\}=\left\{W, S, \alpha_{1}, \alpha_{2}, n, \tau, x_{0}^{-1}\right\}, \varepsilon^{2}=h(a \gamma)^{-1}, \quad \Psi=E F a^{2} \varepsilon h, \quad X=E \gamma \varepsilon^{4} q, \quad \gamma^{2}=12\left(1-v^{2}\right)$
Here a is the characteristic dimension of the domain D, z is the middle surface of an ideal shell, $z(s)=0$ for $s \in \Gamma, \xi \xi(\alpha, \beta)$ is the dimensionless initial deflection and $|\xi| \& 1$. The

[^0]functions $q(\alpha, \beta), z(\alpha, \beta)$ are considered sufficiently smooth. The boundary conditions correspond to: 1) moving hinge support; 2) sliding clamping of the edge; 3) absolutely rigid clamping of the edge.

Let $x^{*} \equiv\left(w^{*}, F^{*}\right)$ denote the fundamental solution of the problem (1.1), (1.2) for $\xi-0$, and let us investigate the buckling of the appropriate equilibrium as the load changes. We assume the load to depend on a single parameter p and the buckling of the fundamental equilibrium of an ideal shell to appear as buckling at the bifurcation point p_{0}. Assuming

$$
\begin{equation*}
w=w^{*}+\omega, \quad F=F^{*}+\psi, \quad p=p_{0}+\lambda \tag{1.3}
\end{equation*}
$$

we obtain a system of equations in operator form

$$
\begin{align*}
M_{0} x=\Pi x+\sum_{m=1} \lambda^{m} C_{m} x-\xi T x+\xi \sum_{m=0} \lambda^{m} R_{m}, \quad M_{0} x=\left(\varepsilon^{2} \Delta^{2} \omega+[z, \psi]-\left[w^{*}\left(p_{0}\right), \psi\right]-\left[F^{*}\left(p_{0}\right), \omega\right]\right. \tag{1.4}\\
\left.-\varepsilon^{2} \Delta^{2} \psi+[z, \omega]-\left[w^{*}\left(p_{0}\right), \omega\right]\right), \quad x=(\omega, \psi), \Pi x=([\omega, \psi], 1 / 2[\omega, \omega]), \quad T x=([\zeta, \psi],[\zeta, \omega]) \\
-R_{m}=\left(\left[\zeta, F_{m}^{*}\right],\left[\zeta, w_{m}^{*}\right]\right), \quad C_{m} x=\left(\left[w_{m}^{*}, \psi\right]+\left[F_{m}^{*}, \omega\right],\left[w_{n}^{*}, \omega\right]\right) ; \quad\left\{w_{m}^{*}, F_{m}^{*}\right\}=\left.\frac{1}{m!} \frac{\partial^{m}}{\partial \nu^{m}}\left\{w^{*}, F^{*}\right\}\right|_{p=p_{m}},
\end{align*}
$$

together with boundary conditions of the form (1.2) from (1.1) and (1.2) for small perturbations ω, ψ, λ.
2. Application of the Liapunov-Schmidt operator method. As a result of linearizing the problems (1.1), (1.2) relative to x^{*}, we have a system

$$
\begin{equation*}
M_{0} x=0, \quad x=(\omega, \psi) \tag{2.1}
\end{equation*}
$$

together with boundary conditions of the form (1.2).
Let a system of n vector-eigenfunctions correspond to the eigenvalue p_{0} of the operator M_{0}. Orthonormalizing it relative to the metric of the space E^{1} that is introduced in /9/, and letting $\varphi_{i} \equiv\left(\omega_{i}, \psi_{i}\right)$ denote the vector-eigenfunctions obtained, we have

$$
\begin{equation*}
\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{E_{1}}=\delta_{i j}, \quad i, j=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta. Then because of the formal self-adjointness of the operator M_{0}, the Schmidt operator M_{1} can be constructed in the form /5-7/

$$
\begin{equation*}
M_{1} x=M_{0} x+\sum_{i=1}^{n} a_{i} \mu_{i} \varphi_{i}, \quad \mu_{i}=\left\langle x, \varphi_{i}\right\rangle_{E_{1}}, \quad a_{i} \int_{D}\left(\omega_{i}^{2}+\psi_{i}^{2}\right) A B d \alpha d \beta=1, \quad i=1,2, \ldots, n \tag{2.3}
\end{equation*}
$$

Now, by using (2.3) we obtain the equation

$$
\begin{equation*}
M_{1} x=\Pi x+\sum_{m=1} \lambda^{m} C_{m} x-\xi T x+\xi \sum_{m=0} \lambda^{m} R_{m}+\sum_{i=1}^{n} a_{i} \mu_{i} \varphi_{i} \tag{2.4}
\end{equation*}
$$

Seeking the solution x in the form of a series

$$
\begin{equation*}
x=\sum_{k+j+\delta \geqslant 1} x_{(k) j \delta} \mu_{1}^{k_{1}} \mu_{2}^{k_{2}} \ldots \mu_{n}^{k_{n} \lambda^{j} \delta} ; \quad(k)=k_{1}, k_{2}, \ldots, k_{n}, \quad k=k_{1}+k_{2}+\ldots+k_{n}, \quad x_{(k) j \delta}=\left(\omega_{(k) j \delta}, \psi_{(k) j \delta}\right) \tag{2.5}
\end{equation*}
$$

$$
k, j, \delta \geqslant 0
$$

where μ_{i}, λ, ξ are small numbers, we find equations to determine $x_{(k) j}$ from (2.4)

$$
\begin{gathered}
M_{1} x_{(1) 00}=a_{i} \varphi_{i}\left(k_{i}=1, k_{j}=0, i \neq j, i=1,2, \ldots, n\right) \\
M_{1} x_{(0) 10}=0, M_{1} x_{(0) 01}=R_{0}, M_{1} x_{(k) j \delta}=\sum_{\eta+i=j} C_{i} x_{(k) \eta \delta}+\Sigma^{\prime}\left(\left[\omega_{(l) \eta r}, \psi_{(m) \gamma t}\right\rceil, \frac{1}{2}\left[\omega_{(l) \eta r}, \omega_{(m) \gamma 1}\right]\right) \cdots\left(\left[\zeta, \psi_{(k) j \beta}\right],\left[\zeta, \omega_{(k) j \beta}\right]\right)- \\
\left.\rho_{0}\left(\left[\zeta, F_{j}^{*}\right], \quad \zeta, w_{j}^{*}\right]\right) \equiv f_{(k) j \delta}, k+j+\delta \geqslant 2, \beta=\delta-1, \quad(m)=m_{1}, m_{2}, \ldots, m_{n} ;(l)=l_{1}, l_{2}, \ldots, l_{n}
\end{gathered}
$$

Here $\rho_{0}=1$ if $(k)=0, \delta=1, j \geqslant 1$, dnd $\rho_{0}=0$ in all other cases. The boundary conditions have the form (1.2). Summation over the symbol Σ^{\prime} occurs over all subscripts $m_{i}+l_{i}=k_{i}$, $\eta+\gamma=j, \quad r+t=\delta$, where $m_{i}, l_{i}, \eta, \gamma, r, t$ are nonnegative integers. According to the generalized schmidt lemma $/ 5 /$, there exists a reciprocal linear bounded operator $M_{1}{ }^{-1}$. Hence, all the problems (2.6), (2.7) are solvable. In particular, we have $x_{(1) 00}=\varphi_{i}$ for $k_{i}=1, k_{j}=$ $0,(i \neq j)$ and $x_{(0) 10}=0$. By using (2.6) we obtain a system of bifurcation equations $/ 6 /$ from the expressions for μ_{i} in (2.3)

$$
\begin{equation*}
\Phi_{i} \equiv a_{0}^{(i)} \xi+\lambda c_{m}^{(i)} \mu_{m}+a_{m l}^{(i)} \mu_{m} \mu_{l}+b_{m i k}^{(i)} \mu_{m} \mu_{l} \mu_{k}+\ldots=0 \tag{2.7}
\end{equation*}
$$

where i varies between 1 and n and the ordinary summation rule is used. Applying (25.6) in $/ 5 /$, we find the formula (6) from $/ 9 /$ to determine the coefficients in (2.3) from (2.5), (2.6) but with $\psi_{0}{ }^{*}, \psi_{1}{ }^{*}$ replaced, respectively, by $F_{0}{ }^{*}, F_{1}{ }^{*}$.

For $i=j$ conditions (2.2) permit evaluation of the constant factors $e_{i} \neq 0$ to the accuracy to which the vector eigenfunctions $\varphi_{i}=e_{i} X_{i}$ are determined, where X_{i} also satisfy the system (2.1). By using the change of variables

$$
v_{i}=\mu_{i} e_{i}, \quad \varphi_{i}=e_{i} X_{i}, \quad a_{0}^{(i)}=e_{i} D^{(i)}, \quad c_{m}^{(i)}=e_{i} e_{m} C_{m}^{(i)}, \quad a_{m l} l^{(i)}=e_{i} e_{m} e_{i} A_{m} l^{(i)}, \quad b_{m l h}^{(i)}=e_{i} e_{m} e_{l} e_{k} B_{m l h}^{(i)}
$$

it can be seen that the system of bifurcation equations (2.7) and the asymptotic representations (2.5) result in a form independent of the amplitudes e_{i}. Therefore, arbitrary numbers not equal to zero can be taken as e_{i} in the calculations. In particular, it can be assumed $e_{i}=1$ or $e_{i}=\left[\max _{D} \mid X_{i} \|^{-1}, i=1,2, \ldots, n\right.$. This simple fact permits elimination of the uncertainty in the Koiter theory for a linear combination of buckled modes in the initial post-critical stage /17/.

Therefore, the problem of constructing equilibrium modes adjacent to x^{*} in the neighborhood of p_{0} is reduced to the problem of seeking all real solutions of the system (2.7). After the solutions of this system have been found, the asymptotic representations of the equilibrium are obtained from (2.5). In the case of an imperfect shell ($\xi \neq 0$), surfaces of values of the critical loads $p^{*}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ are formed in a sufficiently small neighborhood of the bifurcation point p_{0}, where $A_{i}=a_{0}{ }^{(i)}$. To determine them, we shall solve the system (2.7) in combination with the necessary condition for buckling of the fundamental equilibrium /18/

$$
\begin{equation*}
\Phi_{n+1} \equiv \operatorname{det}\left\|\partial \Phi_{i} / \partial \mu_{j}\right\|=0 \quad(i, j=1,2, \ldots, n) \tag{2.8}
\end{equation*}
$$

Such a mothod permits finding the surface of critical load values as a function of n parameters characterizing the shell imperfections without seeking all the branches of the solutions of the system (2.7).

Let A_{i} be functions of a certain parameter s and let the vector $X_{0}=-\left(\mu_{1}{ }^{0}, \mu_{2}{ }^{0}, \ldots, \mu_{n}{ }^{0}\right.$, h) be the solution of the system (2.7), (2.8) for some value $s=s_{0}$. Differentiating its equation with respect to s, we obtain the system

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\partial \Phi_{j}}{\partial \mu_{j}} \frac{\partial \mu_{j}}{\partial s}+\frac{\partial \Phi_{i}}{\partial \lambda} \frac{\partial \lambda}{\partial s}=0 \quad(i=1,2, \ldots, n+1) \tag{2.9}
\end{equation*}
$$

For $s_{1}=s_{0}+\Delta s$ the solution of (2.7), (2.8) is found by using the Newton iterations

$$
\begin{equation*}
X_{k+1}=X_{k}-D^{-1}\left(X_{k}, s_{1}\right) \Psi\left(X_{k}, s_{1}\right), \dot{X}_{k}=\left\{\mu_{1}^{(k)}, \mu_{2}^{(h)}, \ldots, \mu_{n}^{(k)}, \lambda\right\}, \quad \Phi=\left\{\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n+1}\right\} \tag{2.10}
\end{equation*}
$$

Here D^{-1} is the inverse matrix to the matrix of the system (2.9), and $k=0,1, \ldots, l$, where
l is the given number of iterations. Formulas (2.10) permit construction of the critical values $p^{*}(s)$ along a certain given path governed by the law of variation of A_{i} on s. Along this path the value p^{*} is a limit point, with the exception of the case when the rank of the whole matrix is less than $n+1$ and $p^{*}\left(\neq p_{0}\right)$ is a point of secondary bifurcation. Convergence of the iterations (2.10) drops as it is approached, since det (D) tends to zero. Let us note that the points of second bifurcation arouse special interest $/ 2 /$ since they are characterized by an abrupt qualitative change in the system behavior.
3. Nonaxisymmetric buckling of shells of revolution in many eigenmodes. The solution, based on the Koiter theory, is represented in /19/ for the problem of the initial stage in nonaxisymmetric buckling in one eigenmode for a rigidly clamped spherical dome subjected to a load distributed uniformly over a circular domain with center at the apex. Computational formulas are obtained in this section for the analysis of the initial stage of nonaxisymmetric buckling in many eigenmodes of the axisymmetric equilibrium x^{*} of arbitrary shells of revolution closed at the apex.

We derive the equilibrium equation of a shell of revolution subjected to the axisymmetric load $q=q(r, p)$ from (1.1), (1.2) for $A=1, B=\alpha=r, \beta=\theta$. The boundary value problems obtained for $\xi=0$ and any p have the axisymmetric solutions $x^{*}(r)=\left(w^{*}(r), F^{*}(r)\right)$ that is determined from the system of nonlinear equations with the boundary conditions

$$
\begin{equation*}
\varepsilon^{2} A u+u v-\theta_{*} v+\varphi(r)=0, \quad \varepsilon^{2} A v-\frac{1}{2} u^{2}+\theta_{*} u=0 \tag{3.1}
\end{equation*}
$$

$$
\begin{aligned}
& A() \equiv-r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} r(), \varphi(r)=\varphi(r, p)=\int_{0}^{r} q(\tau, p) \tau d \tau, \quad u(r, p)=\frac{\partial w^{*}}{\partial r}, \quad v(r, p)=\frac{\partial F *}{\partial r}, \quad \frac{\partial z}{\partial r}=\theta_{*}(r) \\
& \text { 1) } \left.\left[\frac{d u}{d r}+v u\right]_{r=1}=v(1)=0, \quad 2\right) u(1)=v(1)=0, \text { 3) } u(1)=\left[\frac{d v}{d r}-\frac{v}{r} v\right]_{r=1}=0,\left|\frac{u}{r}, \frac{v}{r}\right|_{r=0}<\infty
\end{aligned}
$$

revolution is manifest at the bifurcation point p_{0} in terms of the nonaxisymmetric buckling. Following $/ 20 /$, we shall seek the solution of the boundary value problems (2.1), (1.2) for $A=1, B=\alpha=r, \beta=\theta$ in the form

$$
\begin{equation*}
(\omega, \psi)=\cos n \theta x_{n}(r), \quad x_{n}(r)=\left(w_{n}, f_{n}\right) \tag{3.2}
\end{equation*}
$$

Here n is an integer. After separating variables, we obtain a system with boundary conditions /20/

$$
\begin{gather*}
l_{n}^{(1)} x_{n} \equiv \varepsilon^{2} L_{n}^{2} w_{n}+\frac{1}{r}\left(\theta_{*}-u_{0}\right)^{\prime}\left(f_{n}^{\prime}-\frac{n^{2}}{r} f_{n}\right)+\frac{1}{r}\left(\theta_{*}-u_{0}\right) f_{n}^{\prime \prime}-\frac{1}{r} v_{0}^{\prime}\left(w_{n}^{\prime}-\frac{n^{2}}{r} w_{n}\right)-\frac{1}{r} v_{0} w_{n}^{\prime \prime}=0 \tag{3,3}\\
l_{n}{ }^{(2)} x_{n} \equiv-\mathrm{e}^{2} f_{n}{ }^{2} f_{n}+\frac{1}{r}\left(\theta_{*}-u_{0}\right)^{\prime}\left(w_{n}^{\prime}-\frac{n^{2}}{r} w_{n}\right)+\frac{1}{r}\left(\theta_{*}-u_{0}\right) w_{n}^{\prime \prime}=0 \\
L_{n}()=()^{\prime \prime}+\frac{1}{r}()^{\prime}-\frac{n^{2}}{r^{2}}(), \quad f_{n}=O\left(r^{2}\right), \quad w_{n}=O\left(r^{2}\right) \quad u\left(p_{0}\right)-u_{0}, v\left(p_{0}\right)=v_{0}, \quad()^{\prime}=\frac{\partial()}{\partial r} \\
\text { 1) } w_{n}=w_{n}^{\prime \prime}+v w_{n}^{\prime}=f_{n}=f_{n}^{\prime}=0, \\
\text { 2) } w_{n}=w_{n}^{\prime}=f_{n}=f_{n}^{\prime}=0 \\
\text { 3) } w_{n}=w_{n}^{\prime}=f_{n}^{\prime \prime}-v f_{n}^{\prime}+v n^{2} f_{n}=0, \quad f_{n}^{\prime \prime \prime}-(2+v) n^{2} f_{n}^{\prime}+3 n^{2} f_{n}+(v-1) f_{n}^{\prime}=0
\end{gather*}
$$

to determine $w_{n}(r), f_{n}(r)$.
Exactly the same problems are obtained if the solution is sought in the form (3.2) but with $\cos n \theta$ replaced by $\sin n \theta$.

Let two vector eigenfunctions x_{s}, x_{m} correspond to the eigenvalue p_{0} of the problems (3.3). Then four vector eigenfunctions correspond to the same value of the initial linearized problem, and we write them in the form

$$
\begin{gathered}
\varphi_{1}=\cos s \theta\left(\gamma_{1}, \delta_{1}\right), \quad \varphi_{3}=\cos m \theta\left(\gamma_{2}, \delta_{2}\right), \quad \varphi_{3}=\sin m \theta\left(\gamma_{1}, \delta_{2}\right) \\
\varphi_{4}=\sin s \theta\left(\gamma_{1}, \delta_{1}\right), \quad \gamma_{i}=\gamma_{i}(r), \quad \delta_{i}=\delta_{i}(r), \quad i=1,2
\end{gathered}
$$

Here s, m are integers, where $s \neq 1 / 2 m, s<m$. It can be shown that only two of the vector eigenfunctions φ_{i} are linearly independent. Hence, we shall later consider the case of interaction between two modes φ_{1} and φ_{2} containing only cosines. For $k=2, k_{1}=k_{2}=1, j=\delta=$ 0 , we have from (2.6) for $x_{1100}=\left(\omega_{1100}, \psi_{1100}\right)$

$$
\begin{equation*}
M_{1} x_{1100}=\left(\left[\omega_{1}, \psi_{2}\right]+\left[\omega_{2}, \psi_{1}\right],\left[\omega_{1}, \omega_{2}\right]\right)=f_{1100} \tag{3.4}
\end{equation*}
$$

Hence, by applying φ_{1} and φ_{2} and seeking the solution x_{1100} in the form

$$
\begin{equation*}
x_{1100}=E(r) \cos (m-s) \theta+F(r) \cos (m+s) \theta \tag{3.5}
\end{equation*}
$$

we obtain a system to determine $E=\left(E_{1}, E_{2}\right)$

$$
\begin{equation*}
l_{m-s}^{(1)} E=1 / 2\left(I_{1}-I_{2}\right), \quad l_{m-s}^{(2)} E=1 / 2\left(I_{3}-I_{4}\right) \tag{3.6}
\end{equation*}
$$

with the boundary conditions in (3.3), but with the subscript n replaced by $m-s$ and x_{n} by E, and the system

$$
\begin{equation*}
l_{m+8}^{(1)} F=1 / 2\left(I_{1}+I_{2}\right), \quad l_{m+3}^{(2)} F=1 / 2\left(I_{3}+I_{4}\right) \tag{3.7}
\end{equation*}
$$

to determine $F=\left(F_{1}, F_{2}\right)$, with the boundary conditions in (3.3) but with x_{n} replaced by F and the subscript n by $m+s$. Here

$$
\begin{equation*}
r I_{1}=\left[\gamma_{1}, \delta_{2}, m\right]+\left[\delta_{2}, \gamma_{1}, s\right]+\left[\delta_{1}, \gamma_{2}, m\right]+\left[\gamma_{2}, \delta_{1}, s\right], r^{2} I_{2}=2 s m\left(\left[\delta_{2}\right]\left[\gamma_{1}\right]+\left[\delta_{1}\right]\left[\gamma_{2}\right]\right) \tag{3.8}
\end{equation*}
$$

$r I_{3}=\left[\gamma_{1}, \gamma_{2}, m\right]+\left[\gamma_{2}, \gamma_{1}, s\right], \quad r^{2} I_{4}=2 s m\left[\gamma_{1}\right]\left[\gamma_{2}\right], \quad\left[\gamma_{1}, \delta_{2}, m\right]=\gamma_{1}^{\prime \prime}\left(\delta_{2}^{\prime}-m^{2} \delta_{2} / r\right), \quad\left[\gamma_{1}\right]=\gamma_{1}^{\prime}-\gamma_{1} / r$
For $m-s=1$, by using the change of variable

$$
\begin{equation*}
x=r E_{1}^{\prime}-E_{1}, \quad y=r E_{2}^{\prime}-E_{2},|x / r, y / r|_{r=0}<\infty \tag{3.9}
\end{equation*}
$$

the system (3.6) is converted into the boundary value problem

$$
\begin{equation*}
\varepsilon^{2}\left(r x^{*}-x^{\prime}-3 x / r\right)+\left(\theta_{*}-u_{n}\right) y-v_{n} x=V_{1}(r), \quad-\varepsilon^{2}\left(r y^{\prime \prime}-y^{\prime}-3 y / r\right)+\left(\theta_{*}-u_{0}\right) x=V_{2}(r) \tag{3.10}
\end{equation*}
$$

$$
\begin{gathered}
2 V_{1}=r\left(\gamma_{1}{ }^{\prime} \delta_{2}{ }^{\prime}+\delta_{1}{ }^{\prime} \gamma_{2}{ }^{\prime}\right)+2 s(m / r)\left(\gamma_{1} \delta_{2}+\delta_{1} \gamma_{2}\right)-m^{2} \gamma_{1}{ }^{\prime} \delta_{2}-m^{2} \delta_{1}{ }^{\prime} \gamma_{2}-s^{2} \gamma_{1} \delta_{2}{ }^{\prime}-s^{2} \delta_{1} \gamma_{2}^{\prime}, 2 V_{2}= \\
r \gamma_{1}{ }^{\prime} \gamma_{2}^{\prime}-m^{2} \gamma_{1}^{\prime} \gamma_{2}-s^{2} \gamma_{1} \gamma_{2}^{\prime}+2 s m \gamma_{1} \gamma_{2} r, \\
\text { 1) } x(1)=y(1)=0,
\end{gathered}
$$

Furthermore, from (2.6) we have

$$
\begin{equation*}
M_{1} x_{2000}=\left(\left[\omega_{1}, \psi_{1}\right], 1 / 2\left[\omega_{1}, \omega_{1}\right]\right) \tag{3.11}
\end{equation*}
$$

for $k=k_{1}=2, \quad k_{2}=0, j=\delta=0$
An equation of such type is obtained in the investigation of buckling in one eigenmode. Following /19/, we seek the solution (3.11) in the form

$$
\begin{equation*}
x_{2000}=\int_{i}^{r} \sigma_{1}(r) d r+B(r) \cos 2 s \theta \tag{3.12}
\end{equation*}
$$

Here $\quad \sigma_{1}=\left(-\beta_{1}, \boldsymbol{a}_{1}\right)$ is determined from the problem

$$
\begin{equation*}
\varepsilon^{2}\left[\left(r \beta_{1}^{\prime}\right)^{\prime}-\beta_{1} / r\right]-v_{0} \beta_{1}+\left(u_{0}-\theta_{*}\right) \alpha_{1}=g_{1}(r), \varepsilon^{2}\left[\left(r \alpha_{1}^{\prime}\right)^{\prime}-\alpha_{1} / r\right]-u_{0} \beta_{1}+\theta_{*} \beta_{1}=g_{2}(r) \tag{3.13}
\end{equation*}
$$

$$
g_{1}(r)=1 / 2\left[s^{2}\left(\gamma_{1} \delta_{1} / r\right)^{\prime}-\gamma_{1}^{\prime} \delta_{1}^{\prime}\right], g_{2}(r)=1 / 4\left[s^{2}\left(\gamma_{1}^{2} / r\right)^{\prime}-\gamma_{1}^{\prime 2}\right], \quad\left|\alpha_{1} / r, \beta_{1} / r\right|_{r=0}<\infty
$$

1) $\beta_{1}{ }^{\prime}(1)+v \beta_{1}(1)=\alpha_{1}(1)=0, \quad$ 2) $\beta_{1}(1)=\alpha_{1}(1)=0, \quad$ 3) $\beta_{1}(1)=\alpha_{1}^{\prime}(1)-v \alpha_{1}(1)=0$
and the vector function $B=\left(B_{1}, B_{2}\right)$ from the system
$l_{2 s}{ }^{(1)} B=h_{1}(r), \quad l_{2 s}{ }^{(2)} B=h_{2}(r), \quad h_{1}=\left[\gamma_{1}, \delta_{1}, s\right]+\left[\delta_{1}, \gamma_{1}, s\right]+2 s^{2}\left[\delta_{1}\right]\left[\gamma_{1}\right], h_{2}=\left[\gamma_{1}, \gamma_{1}, s\right]+s^{2}\left[\gamma_{1}, \gamma_{1}\right]$
with the boundary conditions in (3.3) but with the subscript n replaced by $2 s$ and x_{n} by B.
The vector function x_{0200} is contructed in the form (3.12) but with s replaced by m, σ_{1} by $\sigma_{2} \equiv\left(-\beta_{2}, \alpha_{2}\right)$, and B by $D \equiv\left(D_{1}, D_{2}\right)$, which are determined, respectively, from the problems (3.3)- (3.14) but with changing there $s_{1}, \gamma_{1}, \delta_{1}$, respectively, by $m, \gamma_{2}, \delta_{2}$.

The coefficients of the system of bifurcation equations are derived from formula (6) in /9/for $n=2$. Omitting the tedious calculations, we present the final formulas to evaluate these coefficients

$$
\begin{gather*}
c_{i}^{(i)}=4 \pi \int_{0}^{1} \beta_{i} \frac{\partial \varphi}{\partial P} d r, \quad c_{2}^{(1)}=c_{1}^{(2)}=0, \quad a_{m l}^{(i)}=0, \quad b_{222}^{(1)}=b_{112}^{(1)}=b_{111}^{(2)}=b_{132}^{(2)}=0 \quad(i, m, l=1,2) \tag{3.15}\\
b_{111}^{(1)}=-4 \pi \int_{0}^{1}\left\{g_{1} \beta_{1}-a_{1} g_{2}-\frac{1}{2} r\left(h_{1} B_{1}+h_{2} B_{2}\right)\right\} d r, \quad b_{222}^{(2)}=-4 \pi \int_{0}^{1}\left\{G_{1} \beta_{2}-\alpha_{2} G_{2}-\frac{1}{2} r\left(H_{1} D_{1}+H_{2} D_{2}\right)\right\} d r \\
b_{122}^{(1)}=\frac{\pi}{2}\left\{I-8 \int_{0}^{1}\left(\beta_{2} g_{1}-\alpha_{2} g_{2}\right) d r\right\}, \quad b_{112}^{(2)}=\frac{\pi}{2}\left\{I-8 \int_{0}^{1}\left(\beta_{1} G_{1}-\alpha_{1} G_{2}\right) d r\right\}, \quad b_{122}^{(1)}=b_{112}^{(2)} \\
I=\int_{0}^{1}\left\{E_{1}\left(I_{1}-I_{2}\right)+E_{2}\left(I_{3}-I_{4}\right)+F_{1}\left(I_{1}+I_{2}\right)+F_{2}\left(I_{3}+I_{4}\right)\right\} d r
\end{gather*}
$$

where G_{i}, H_{i} are obtained from expressions for g_{i}, h_{i}, respectively, by using the replacement of $s, \gamma_{1}, \delta_{1}$ by $m, \gamma_{3}, \delta_{2}$.

To prove (3.15), there is used the identity

$$
\begin{aligned}
& \int_{0}^{1}\left\{\left[E_{1}, \delta_{1}, s\right]+\left[\delta_{1}, E_{1}, m-s\right]-2(m-s) s\left[E_{1}\right]\left[\delta_{1}\right] r^{-1}\right\} \gamma_{2} d r= \\
& \quad\left\{E_{1}^{\prime} \delta_{1}^{\prime} \gamma_{2}-s^{2} E_{1}^{\prime} \delta_{1} \gamma_{2}+2(m-s) s E_{1}\left(\delta_{1}^{\prime} \gamma_{2}-\delta_{1} \gamma_{2} r^{-1}\right)-E_{1} \delta_{1}^{\prime} \gamma_{2}^{\prime}+\right. \\
& \\
& \left.\quad E_{1}\left(\delta_{1} \gamma_{2} r^{-1}\right)^{\prime}\right\} \mathbf{o}^{1}+\int_{0}^{1} E_{1}\left\{\left[\gamma_{2}, \delta_{1}, s\right]+\left[\delta_{1}, \gamma_{2}, m\right]-2 m s\left[\gamma_{2}\right]\left[\delta_{1}\right] r^{-1}\right\} d r
\end{aligned}
$$

which is confirmed by integration by parts. The equality $b_{122}^{(1)}=b_{112}^{(2)}$ is deduced from the two formulas preceding it in (3.15). This equality is the corollary of the conservativness of the construction. It is assumed in the derivation of (3.15) that $s \neq 1 / 2 m$ and $s \neq 1 / 3 m(s<$ m).

We now assume that n vector eigenfunctions correspond to the eigenvalue p_{0} of the problem (3.3). Then we have n vector eigenfunctions of the form

$$
\begin{equation*}
\varphi_{i}=\cos m_{i} \theta\left(\gamma_{i}, \delta_{i}\right), \quad \gamma_{i}=\gamma_{i}(r), \quad \delta_{i}=\delta_{i}(r), \quad i=1,2, \ldots, n, \quad m_{1}<m_{2}<\ldots<m_{n} \tag{3.16}
\end{equation*}
$$

for the eiqenvalue p_{0} of the initial linearized problem (2.1). Here $m_{i} \neq 1 / \frac{1}{2} m_{j}, m_{i} \neq 1 / 3 m_{j},(j>i)$.

The vector eigenfunctions $\sin m_{i} \theta\left(\gamma_{i}, \delta_{t}\right)$ are not included in the system (3.16) because of their linear dependence on φ_{i}. Determination of the coefficients of the series (2.5) is reduced to solving problems of either the form (3.4)- (3.10), or (3.11)- (3.14). Coefficients of the system of bifurcation equations are evaluated by formulas (3.15) with the appropriate change in subscript (m_{i} for s and m_{j} for m).

We consequently obtain that the system (2.7) reduces to the form

$$
\begin{equation*}
\Phi_{i} \equiv \mu_{i}\left(\sum_{k=1}^{n} a_{i k} \mu_{k}^{2}+\lambda\right)+\xi d_{i}=0 \quad(i=1,2, \ldots, n), \quad d_{i}=A_{i} c_{i}^{-1} \quad a_{i k}=h_{i k} c_{i}^{-1}, \quad c_{i} \neq 0, \quad h_{i k}=h_{k i} \tag{3.17}
\end{equation*}
$$

In the case the conditions $m_{i} \neq 1 / 2 m_{j}$ or $m_{i} \neq 1 / 3 m_{j}$ are disturbed, some of the zero coefficients in (3.15) will not be zero and the form of the bifurcation system (3.17) will be changed (see $/ 2,17 /$, for instance). In order to find the solution of the system (3.17), we assume analogously to /9/

$$
\begin{equation*}
d_{1}=\ldots \ldots \ldots=d_{m}=0, \quad d_{n} \neq 0, \quad m=n-1 \tag{3.18}
\end{equation*}
$$

The first group of 2^{m} families of solutions of the system (3.17), (3.18), (2.8) is represented by formulas (9) in $/ 9 /$. To find the second group of families of solutions, we assume

$$
\begin{equation*}
\mu_{k_{1}}=\mu_{k_{2}}=\ldots=\mu_{k_{l}}=0, \quad 1 \leqslant k_{j} \leqslant m ; \quad j=1,2, \ldots, l \tag{3.19}
\end{equation*}
$$

We equate the expression in parentheses in the first m equations of the system (3.17), (3.18) to zero. In the system of linear equations with respect to $\mu_{i}{ }^{2}$ obtained we extract the matrix that is obtained from the matrix of coefficients $a_{i k}$ by cancelling columns with numbers k_{1}, k_{2}, \ldots, k_{1} and rows with numbers $k_{1}, k_{2}, \ldots, k_{l-1}, n$. We denote the extracted matrix of order $n-l$ by $E^{k_{1} k_{2} \ldots, k_{l}}$, and its determinant by E, i.e.,

$$
\begin{align*}
& E=\operatorname{det}\left(E^{k_{2} k_{2} \ldots k_{l}}\right)=\operatorname{det}\left\|a_{r s}\right\|, \quad 1 \leqslant r \leqslant m \tag{3.20}\\
& r \neq k_{1}, k_{2}, \ldots, k_{l-1}, n ; \quad 1 \leqslant s \leqslant n, \quad s \neq k_{1}, k_{2}, \ldots, k_{l-1}, \\
& k_{i} ; \quad k_{l} \neq n
\end{align*}
$$

Solving the system of equations with the matrix $E^{k_{1} k_{s} \ldots k_{y}}$ we obtain for $i \neq k_{j}(j=1,2$, . . , l)

$$
\begin{equation*}
\mu_{i}{ }^{2}=-\lambda E-1 H_{i}, \quad I_{i}=\sum_{r=1}^{m} E_{r i} \tag{3.21}
\end{equation*}
$$

Here $E_{r i}$ is the cofactor of the element. $a_{r i}$ of the matrix $E^{k_{1} k_{t \ldots} \cdot k_{i}}$, and the prime means that the summation is over subscripts which do not agree with $k_{1}, k_{2}, \ldots, k_{l-1}$. Substituting (3.21) into the last equation in (3.17), we obtain

$$
\begin{equation*}
p_{0}-p=-\lambda=E H_{n}^{-1 / t}\left\{\xi d_{n}\left(E-\sum_{t=1}^{n} a_{n t} H_{t}\right)\right\}^{3 / s} \tag{3.22}
\end{equation*}
$$

Here the double prime means that the summation is over subscripts that do not agree with k_{1}, k_{2}, \ldots, k_{l}. All the families of solutions of this group are obtained by a change in the number l in (3.19) and by sampling l of the subscripts $k_{1}, k_{2}, \ldots, k_{l}$ from m elements. It can be shown that the number of solutions of the form (3.21), (3.22) equals $m 2^{m-1}$. Let us note that the number of families of solutions here and in $/ 9 /$ were computed relative to $\mu_{i}{ }^{2}$. Upon extracting the square root, different solutions can appear, which differ in sign in part or all of the μ_{i}. Each of these solutions generates its surface of critical loads although the values of λ are identical for them for $d_{1}=\ldots=d_{m}=0, d_{n} \neq 0$ (see Sect.4, below).
4. Spherical shell under uniform external pressure. A packet of numerical programs for the BESM-6 electronic computer was compiled by the formulas from Sect. 3 by using finite differences in combination with matrix factorization and the procedure of continuation in the load parameter $/ 19-21 /$. Let us present some results of computations for imperfect spherical shells.

Let q_{θ} be the classical value of the critical pressure for a complete sphere $\Lambda \equiv 2$ (3 (1$\left.\left.v^{2}\right)\right]^{1 / 4}(H / h)^{1 / 2}, p_{0}=p_{H} / q_{0}$, where H is the shell rise, h is its thickness, γ is the poisson's ratio, and p_{H} is the critical pressure of the nonaxisymmetrical buckling of an ideal spherical shell. There then results from $/ 20 /$ that two vector eigenfunctions with the harmonics $s=11, m=12$ and amplitudes determined from (3.1), (3.3) for $\theta_{*}=-r$ correspond to the least eigenvalue $p_{0}=0.790$ of the problem (2.1) in the case of rigid support of the edge for $\Lambda=17$.

Evaluating the coefficients of the system of bifurcation equations by means of (3.15), we obtain that the critical loads $p^{*}\left(A_{1}, A_{2}\right)$ are determined as functions of the geometric imperfections from the system of equations

$$
\begin{equation*}
\frac{\partial V}{\partial \mu_{k}}=0, \quad \operatorname{det}\left\|\frac{\partial^{2} \tau}{\partial \mu_{k} \partial \mu_{j}}\right\|=0, \quad k, j=1,2 \tag{4.1}
\end{equation*}
$$

$$
V=910.74 \mu_{1}^{4}+1023.58 \mu_{2}^{4}+3871.80 \mu_{1}^{2} \mu_{2}^{3}+\left(p-p_{0}\right)\left(2123.50 \mu_{1}^{2}+2377.44 \mu_{2}^{2}\right)+\xi\left(A_{1} \mu_{1}+A_{2} \mu_{2}\right)
$$

Let us note that because of (3.15) the coefficients $b_{129}^{(1)}$ and $b_{122}^{(2)}$ are equal. However, to check the computation, they are evaluated independently by the formulas represented in (3.15). The discrepancy between the values obtained is 0.018%. Using (4.1), we find the coefficients

$$
\begin{equation*}
a_{1}=a_{11}=0.8578, \quad b_{1}=a_{12}=1.8233, \quad a_{2}=a_{21}=1.6286, \quad b_{2}=a_{22}=0.8636 \tag{4.2}
\end{equation*}
$$

for the system (3.17) for $n=2$. For an initial deflection $\xi \zeta_{2}(r) \cos 12 \theta$ (in the $\left.d_{1}=0 \quad p l a n e\right)$ we find three critical values of shell snap-through governed by the formulas

$$
\begin{equation*}
p_{2}^{(i)}=p_{0}-\eta_{i}\left(d_{8} \xi\right)^{2 / 2}, \quad|\xi| \ll 1, \quad i=1,2,3,4 \tag{4.3}
\end{equation*}
$$

$$
\begin{gathered}
\eta_{1} \equiv\left[1.5\left(3 b_{2}\right)^{-1 / 2}\right]^{2 / 2} \approx 1.798, \quad \eta_{2} \equiv b_{1}\left(b_{1}-b_{2}\right)^{-2 / 3} \approx 1.871, \quad \eta_{3}=\eta_{4} \equiv\left[1.5 \Delta_{2}^{-1}\left(3 \Delta_{3} \Delta_{2}^{-1}\right)^{1 / 2} a_{1}\right]^{2 / 4} \approx 2.892 \\
d_{2}=\frac{-\pi}{c_{2}} \int_{0}^{1}\left\{\left(\zeta_{2}^{\prime} v_{0}\right)^{\prime} \gamma_{2}+\left(\zeta_{2}^{\prime} u_{0}\right)^{\prime} \delta_{2}-\frac{m^{2}}{r}-\zeta_{2}\left(v_{0}^{\prime} \gamma_{2}+u_{0}^{\prime} \delta_{2}\right)\right\} d r, \quad \Delta_{2}=a_{1}-a_{2}, \quad \Delta_{3}=a_{1} b_{2}-a_{2} b_{1}
\end{gathered}
$$

in a sufficiently small neighborhood of p_{0}, from formulas (9) in /9/ and (3.21), (3.22). We hence have four solutions

$$
\begin{align*}
& \mu_{1}^{(1)}=0, \quad \mu_{2}^{(1)}=\left[\frac{1}{3} L_{1} b_{2}^{-1}\right]^{1 / 2}, \quad \mu_{1}^{(2)}=0, \quad \mu_{2}^{(2)}=\left[L_{2} b_{1}^{-1}\right]^{1 / 2} \tag{4.4}\\
& \mu_{1}^{(3)}=\left[\left(L_{3}-b_{1} y^{2}\right) a_{1}{ }^{-1}\right]^{1 / 2}, \quad y=\mu_{2}^{(3)}=-\left[1 / 3 L_{3} \Delta_{3} \Delta_{2}{ }^{-1}\right]^{1 / 2} \\
& \mu_{1}^{(4)}=-\mu_{1}^{(3)}, \quad \mu_{2}^{(4)}=\mu_{2}{ }^{(3)}, \quad L_{i}=-\lambda_{i}=p_{0}-p_{2}^{(i)}, \quad i=1,2,3,4
\end{align*}
$$

For an initial deflection $\xi \zeta_{1}(r) \cos 11 \theta$ (in the $d_{2}=0$ plane), we deduce

$$
\begin{equation*}
p_{1}^{(i)}=p_{0}-x_{i}\left(d_{1} \xi\right)^{2 / 4}, \quad|\xi| \ll 1, \quad i=5,6,7,8, \quad x_{5}=1.795, \quad x_{8}=1.937, \quad x_{7}=x_{8}=2.323 \tag{4.5}
\end{equation*}
$$

from (9) in /9/ and (3.21), (3.22). Here d_{1} is obtained from d_{2} by replacing m by s and all the subscripts 2 by the subscripts 1. Formulas for solutions for $i=5,6,7$, 8 are obtained, respectively, from (4.4) for $i=1,2,3,4$ by replacing $a_{1}, b_{1}, a_{2}, b_{2}$, respectively, by $b_{2}, a_{2}, b_{1}, a_{1}$, and moreover, $\mu_{1}{ }^{(i)}, \mu_{2}{ }^{(i)}$ by $\mu_{2}{ }^{(i)}, \mu_{1}{ }^{(i)}$. Values of $\mu_{1}{ }^{(i)}, \mu_{2}{ }^{(i)}$, and L_{i} for $i=1$ and 5 correspond to buckling in one eigenmode /19/.

To construct the critical load surfaces as functionals of the geometric imperfections ξd_{1} and $\quad \xi d_{2}$, we solve the system (3.17) numerically for $n=2$, (3.18), (4.2) with the application of formulas (2.10). Let us introduce polar coordinates by setting $\xi d_{1}=R \cos \alpha, \xi d_{2}=R \sin \alpha$, where $0 \leqslant \alpha \leqslant 2 \pi$. Continuing each of the solutions (4.3)-(4.5) along the angle α for fixed R we obtain that four surfaces $L_{i}\left(\xi d_{1}, \xi d_{2}\right)$ are located above the plane $L=0$, where $i=1,2,3$,
4. For $n=2$ the system (3.17) possesses symmetry properties when the signs of d_{i} or μ_{i} are reversed. A section of these surfaces by a circular cylinder with radius $R=0.01 \quad$ is represented in the Fig.1. The surface L_{1} fasses through the curve (4.3) for $i=1$ and (4.5)

Fig. 1 for $i=5$, which are obtained under the assumption of buckling in one eigenmode. The intersection of L_{1} with the cylinder yields the curve 1 in the Fig.l, which takes the value $L \approx 0.0833$ at the points $\alpha=0$, $1 / 2 \pi, \pi$ and the value $L \approx 0.0955$ at the points $\alpha=$ $1 / 4 \pi, 3 / 4 \pi$, close to the maximum values on theis curve. There are no singular points on the surface L_{1},where det $D=0$. (The point $\quad R=0$ is not taken into account). The surfaces L_{2}, L_{3}, L_{4} are interconnected along the rays a mentioned below to form a three-sheeted surface with self-intersections and reentries in the three-space $\left(\xi d_{1}, \xi d_{2}, L\right)$. We mention at once that the curves (4.3) for $i=2$ and (4.5) for $i=6$, that lie on these surfaces, consist of singular points at which det $D=0$. For $\alpha=0$ the surface L_{2} passes through the curve (4.5) for $i=7$, for $\alpha=0.5 \pi$ through the curve of singular points (4.3) for $i=2$, for $\alpha=\pi$ through the curve (4.5) for $i=7$, and for $\alpha=1.5 \pi$ through the curve (4.3) for $i=3$. Upon the traversal in α along this surface after a complete revolution, i.e., for $\alpha=2 \pi$ we will not return to
the curve (4.5) for $i=7$, but will arrive at the curve of singular points (4.5) for $i=6$, which lies below. Along this curve the surface L_{2} goes over into the surface L_{3} in the fivedimensional space of the variables $\xi d_{1}, \xi d_{2}, L, \mu_{1}, \mu_{2}$. Still another set of singular points is on the surface L_{2} along the ray $\pi+\alpha_{*}$, where $\alpha_{*}=0.730$. The intersection of L_{2} with a cylinder yields curve 2 in the fig.l.

The surface L_{3} passes through the curve of singular points (4.5) for $i=6$ for $\alpha=0$, through the curve (4.3) for $i=3$ for $\alpha=0.5 \pi$, through the curve (4.5) for $i=8$ for $\alpha=\pi$, and through the curve (4.3) for $i=2$ for $\alpha=1.5 \pi$. Upon a traversal in α along the surface
L_{3} after a complete rotation, we arrive at the curvc (4.5) for $i=8$, along which the surface
L_{3} is connected to the surface L_{4} in the five-dimensional space. Along the ray $\pi-\alpha_{*}$ there is a family of singular points on L_{3}. The intersection of L_{3} with the cylinder yields the curve 3 in the Fig.l.

The surface L_{4} passes through the curve (4.5) for $1=8$ for $\alpha=0$, through the curve (4.3) for $i=4$ for $\alpha=0.5 \pi$, through the curve of singular points (4.5) for $i=6$ for
$\alpha=\pi$, through the curve (4.3) for $i=4$ for $\alpha=1.5 \pi$, and after a complete rotation in α arrives at the curve (4.5) for $i=7$. The surfaces L_{2} and L_{4} are connected along this last curve. Singular points are located on the surface L_{4} along the rays α_{*} and $2 \pi-\alpha_{*}$. The intersection of L_{4} with the cylinder yields the curve 4 in the Fig.l.

Therefore, by making one complete rotation in α, we pass the surface L_{2} and drop onto the surface L_{3}, which we traverse as a result of the second complete rotation in α, and we now drop onto the surface L_{4}. After the third complete rotation in a we pass the surface L_{4} and return to the surface L_{2}. A further traversal duplicates the picture described above. Let us present the coordinates of the points noted in the figure. The points $A_{i}, B_{i}, D_{i}, E_{i}$ have the ordinates $0.1073 .0 .0899,0.0868,0.1342$, respectively. As has already been noted, the points
$B_{i}, D_{i}, C_{j r}$ where $i=1,2$ and $j=1,2,3,4$, are singular or secondary bifurcation points $/ 2,22 /$. The points $C_{1}, C_{2}, C_{3}, C_{4}$ have the coordinates $\left(\alpha_{*}, y_{*}\right),\left(\pi-\alpha_{*}, y_{*}\right),\left(\pi+\alpha_{*}, y_{*}\right),\left(2 \pi-\alpha_{*}, y_{*}\right)$, respectively, where $\alpha_{*}=0,730, y_{*}=0.0218$. The points $M_{i}\left(\alpha_{j}, 0.151\right)$ are of indubitable interest, where $\alpha_{1}=0.981$, $\alpha_{2}-\pi-\alpha_{1}, \alpha_{3}=\pi+\alpha_{1}, \alpha_{4}=2 \pi-\alpha_{1}$. At these points curves $2,3,4$ take on maximal values, which corresponds to the greatest reduction in the critical pressure for a given value of $R=\|\xi\|\left\{d_{1}^{2}+\right.$ $\left.d_{2}\right)^{2 / 2}=0.01$.
5. Conical shell under uniform external pressure. There results from the numerical results in /23/ that nonaxisymmetrical buckling along two eigenmodes holds for a conical shell under uniform external pressure and rigid clamping of the edge when $\Lambda=24$ and $p_{0}=0.242$, where the appropriate harmonics have the number $s-10$ and $m=11$. In this case computations by the formulas of Sect. 3 result in the potential function

$$
\begin{equation*}
V=42.134 \mu_{1}^{4}+44.722 \mu_{2}^{4}+170.04 \mu_{1}^{2} \mu_{2}^{2}+\left(p-P_{0}\right)\left(1946.81 \mu_{1}^{2}+2183.15 \mu_{2}^{2}\right)+\xi\left(A_{1} \mu_{1}+A_{2} \mu_{2}\right) \tag{5.1}
\end{equation*}
$$

For the initial deflection $\xi \zeta_{2}(r) \cos 11 \theta$ (in the $d_{1}=0$ plane) we obtain (4.3) and (4.4), where $\eta_{1}=0.6635, \eta_{2}=0.6767, \eta_{3}=\eta_{4}=1.1536$. For the initial deflection $\xi \zeta_{1}(r) \cos 10 \theta$ (in the $d_{3}=0$ plane), we obtain (4.5), where $x_{5}=0.6515, x_{8}=0.7335, x_{7}=x_{8}=0.8299$. The location of the surfaces L_{i} is analogous to the case of the spherical shell described above; $C_{1}(0.7127,0.0086) ; M_{1}(0.982,0.060)$.
6. Spherical shell under radially varying pressure. Let us consider the nonaxisymmetric buckling of a rigidly clamped spherical shell under a pressure distributed according to the law $q=4 p \sin (\pi r / 2)$. The case of buckling in two eigenmodes holds for $\Lambda=40, p_{0}=0.743$, where $s=32$ and $n=33$. Computations by the formulas of Sect. 3 result in the system (4.1), where the function V now has the form

$$
\begin{equation*}
V=1884.73 \mu_{1}^{4}+1069.78 \mu_{2}^{4}+7708.95 \mu_{1}^{2} \mu_{2}^{2}+\left(p-p_{0}\right)\left(5905.88 \mu_{1}^{2}+6211.91 \mu_{2}^{2}\right)+\xi\left(A_{1} \mu_{1}+A_{2} \mu_{2}\right) \tag{6.1}
\end{equation*}
$$

For the initial deflection $\xi \zeta_{2}(r) \cos 33 \theta$ (in the $d_{1}=0$ plane) we obtain (4.3), (4.4), where $\eta_{1}=1.6237, \eta_{2}=1.7029, \eta_{3}=\eta_{4}=2.4788$. For the initial deflection $\xi \xi_{1}(r) \cos 32 \theta$ (in the $d_{2}=0$ plane) we obtain (4.5), where $x_{5}=1.6272, x_{6}=1.7390, x_{7}=x_{8}=2.2185$. The disposition of the surfaces L_{i} is analogous to the preceding; $C_{1}(0.759,0.018) ; M_{1}(0.982,0.119)$.

For a rigidly clamped spherical shell subjected to a pressure distributed according to the law $q=4 p r^{2}$ the case of buckling holds, for instance, for $\Lambda=40, p_{0}=0.778$, where $s=33, m=34$. Analogously, we find

$$
\nu=1344.68 \mu_{1}^{4}+1397.08 \mu_{2}^{4}+5486.65 \mu_{1}^{2} \mu_{2}^{2}+\left(p-p_{0}\right)\left(5652.02 \mu_{1}^{2}+5929.83 \mu_{2}^{2}\right)+\xi\left(A_{1} \mu_{1}+A_{2} \mu_{2}\right)
$$

For the initial deflection $\xi \zeta_{2}(r) \cos 34 \theta$ we obtain (4.3), (4.4), where $\eta_{1}=1.4706, \eta_{2}=1.5419$, $\eta_{3}=2.24728, \eta_{3}=\eta_{4}$. For the initial deflection $\xi \zeta_{1}(r) \cos 33 \theta$ we obtain (4.5), where $x_{5}=1.4754, x_{6}-$ $1.5770, x_{1}=r_{9}=2.0085$. The arrangement of the surfaces L_{i} is the same; $C_{1}(0.759,0.020) ; M_{1}(0.982,0.131)$.

The author is grateful to I. I. Vorovich, V. I. Iudovich, and P. E. Tovstik for discussing the results.

REFERENCES

1. KOITER W.T., Curxent trends in the theory of buckling. In: Buckling of Structures. Springer-Verlag, Berlin, pp.1-16,1976.
2. HANSEN J.W., Some two-mode buckling problems and their relation to catastrophe theory. AIAA J. Vol.15, No.11, pp. 1638-1644, 1977.
3. MUSHTARI Kh.M. and GALIMOV K.Z., Nonlinear Theory of Elastic Shells, Tatknigoizdat, Kazan', 1957.
4. VOROVICH I.I., On some direct methods in the nonlinear theory of shallow shells, PMM, Vol. 20. No.4. 1956.
5. VAINBERG M.M. and TRENOGIN V.A., Theory of Bifuxcation of Solutions of Nonlinear Equations. "Nauka", Moscow, 1969.
6. SRUBSHCHIK L.S., and TRENOGIN V.A., On the buckling of flexible plates, PMM, Vol. 32,No.4, 1968.
7. ZHUKOV M.Iu. and SRUBSHCHIK L.S., Post-buckling behavior of a closed spherical shell, PMM, Vol. 35, No.5, 1971.
8. MALLET-PARET J., Buckling of cylindrical shells with small curvature, Quart. Appl. Math. Vol. 35, No.3, pp.383-400, 1977.
9. SRUBSHCHIK L.S., Buckling of elastic shells with initial imperfections in many eigenmodes, Dokl. Akad. Nauk SSSR, Vol. 249, No.4, 1979.
10. STEIN M., Some recent advances in the investigation of shell buckling. AIAA J., Vol. 6 , No.12, pp.2339-2345, 1968.
11. POGORELOV A.V., Geometric Theory of Shell Stability, "Nauka", Moscow, 1966.
12. KALNINS A. and BIRICIKOGLU V., On the stability analysis of imperfect spherical shells, Trans. ASME, Ser. E, J. Appl. Mech., Vol.37, No.3, pp.629-634, 1970.
13. GRIGOLIUK E.I., and KABANOV V.V., Stability of Circular Cylindrical Shells. Science Surveys. Mechanics of Solid Deformable Bodies 1967, VINITI, Moscow, 1969.
14. HUTCHINSON J.W., and KOITER W.T., Postbuckling theory. Appl. Mechs. Revs., Vol. 23, No.12, pp. 1353-1366, 1970.
15. VOROVICH I.I. and MINAKOVA N.I. Stability Problems and Numerical Methods in the Theory of Spherical Shells. Science and Engineering Surveys. Mechanics of Solid Deformable Bodies, Vol. 7, VINITI, Moscow, 1973.
16. TVERGAARD V., Buckling behavior of plate and shell structures. In: Proceedings 14th IUTAM Congress Theoretical and Applied Mechanics Delft, The Netherlands, 1976.
17. HUTCHINSON J.W., Imperfection sensitivity of externally pressurized spherical shells, Trans. ASME, Ser. E., J. Appl. Mech., Vol. 34, No.l, pp. 49-55, 1967.
18. THOMPSON J.M., Basic principles in the general theory of elastic stability, J. Mech. and Phys. Solids, Vol.ll, No.l. pp. 13-20, 1963.
19. FITCH J.R., and BUDIANSKY B., Buckling and postbuckling behavior of spherical caps under axisymmetric load. AIAA J., Vol.8, No.4, pp. 668-693, 1970.
20, HUANG N.C., Unsymmetrical buckling of thin shallow spherical shells, Trans. ASME, Ser. E., J. Appl. Mech., Vol.31, No.3, pp. 447-452, 1964.
20. SAMARSKII A.A., Introduction to the Theory of Difference Schemes, "Nauka", Moscow, 1971.
21. BAUER L., KELLER H., and REISS E., Multiple eigenvalues lead to secondary bifurcations, SIAM Rev., Vol.17, No.1, pp. lO1-122, 1975.
22. VALISHVILI N.V., Methods of Analyzing Shells of Revolution on Digital Computers,"Mashinostroenie", Moscow, 1976.

[^0]: * Prikl.Matem.Mekhan.,44,No.5,892-904,1980

